

USDA APHIS RESEARCH UPDATE Spotted lanternfly

Otis Laboratory Scientists Working on Spotted Lanternfly

Biolo

Biological control

Trap design

Artificial rearing

USDA APHIS RESEARCH UPDATE Spotted lanternfly

Cooperband lab update

- Trap and Lure Development
- Host preference & suitability
- Behavioral bioassays
- Volatile profiles & electrophysiology
- Dispersal study

Miriam Cooperband Otis Laboratory USDA-APHIS-PPQ-CPHST Jacob Wickham Chinese Academy of Sciences Nathan Derstine Otis Laboratory / University of Florida Cooperators Isaiah Canlas Otis Laboratory / University of Florida Cooperators Kelley Murman & Matt Wallace East Stroudsburg University Greg Setliff Kutztown University Sven Spichiger & John Baker Pennsylvania Department of Agriculture Tom Baker Pennsylvania State University Daniel Carrillo University of Florida

Spotted Lanternfly Kairomones

Cooperband lab

Lure Release Rates & Longevity

Compound	Maker	Lure Type
Methyl salicylate	AlphaScents	1. Pipette bulb
	Sino Green	2. Black heart
	Hercon	3. Laminate square
	AlphaScents	4. High release

Spotted Lanternfly Kairomones

Spotted Lanternfly Kairomones

Methyl Salicylate Lures

Cooperband & Wickham

Trap Testing for Spotted Lanternfly

Trap Testing for Spotted Lanternfly

Traps & Lures for Spotted Lanternfly

- Methyl salicylate lures improved trap capture of 3rd instar and adult SLF by roughly 3-fold.
- Webcote sticky bands caught roughly twice as many nymphs and 30x as many adults as KBIL bands.
- BugBarrier caught 3-4 times more 1st instar SLF at a low density site than Webcote, making it a better detection tool at least for 1st instars.
- It was observed that BugBarrier also reduced non-targets, and had a longer field life.
- We continue to test BugBarrier and several additional trap designs in 2018 to develop better trapping options for 4th instars and adults.

USDA RESEARCH UPDATE Spotted lanternfly

- Trap and Lure Development
- Host preference & suitability
- **Behavioral bioassays**
- Volatile profiles & electrophysiology
- **Dispersal study**

Leslie Abreu, Stefani Cannon, Kelley Murman, & Matt Wallace Otis Laboratory / East Stroudsburg University

Jacob Wickham **Chinese Academy of Sciences**

Isaiah Canlas Otis Laboratory / University of Florida

Greg Setliff, Cathryn Pugh, & Michael Toolan **Kutztown University**

Proposed Timing of Adult Behavior and Sex Ratio

2016 Setliff

On what plants can SLF feed and develop exclusively from 1st instar to adult?

2017 Cooperband/Murman/Wallace

On what plants can SLF feed and develop exclusively from 1st instar to adult?

Field sleeves set up on Ailanthus and Chinaberry by cooperators in China (5 sleeves per tree species with 10 SLF each)

% of field sleeves reaching developmental stage

2017 Cooperband/Murman/Wickham

¹ Field sleeves from PA and China ² Field sleeves from China

Summary of Host Suitability Results

Plant tested	Scientific Name	Feeding? (survived >7d)	Suitable host for development from first instars to adults?
Tree-of-heaven	Ailanthus altissima	YES	YES
Chinaberry	Melia azedarach	YES	YES
Hops	Humulus lupulus	YES	YES
Black walnut	Juglans nigra	YES	YES
Wild grape	Vitis vinifera sylvestris	YES	NO
Oriental bittersweet	Celastrus orbiculatus	YES	NO?
Virginia creeper	Parthenocissus quinquefolia	YES	NO
Weeping willow	Salix babylonica	YES	NO
Black birch	Betula nigra	YES	NO
Blueberry	Vaccinium cyanococcus	YES	NO
Horseradish	Armoracia rusticana	YES	NO
Silver maple	Acer saccharinum	YES	NO
Spicebush	Lindera benzoin	NO	NO
Basil	Ocimum basilicum	NO	NO

2017 Cooperband/Murman/Wickham

USDA RESEARCH UPDATE Spotted lanternfly

- Trap and Lure Development
- Host preference & suitability
- Behavioral bioassays
- Volatile profiles & electrophysiology
- Dispersal study

Isaiah Canlas & Katie Cleary Otis Laboratory / University of Florida Cooperator

Cooperband lab

- Leaves
- Plant volatile collections
- Plant essential oils
- Synthetic compounds
- Compound blends
- Insect volatile extracts

Cooperband lab

Instar	z	Comparison	Signif	Frec	quency	y and	Dire	ction	of Ch	oice	
2nd2nd2nd2nd2nd2nd 1st	28	black cherry vs control									
	22	Ailanthus vs control	Υ								
	40	alfalfa vs control									
	44	Chinaberry vs control	Υ								
	32	horseradish vs. control			[
	30	oriental bittersweet vs control			[
	40	hops vs control	Υ								
2nd	42	wild grape vs control	Υ								
3rd 3rd 3rd 3rd 3rd 2	18	Ailanthus vs control	Υ								
	18	Chinaberry vs control	Y								
	32	hops vs control									
	34	Basil vs control									
	40	milkweed vs control									
3rd	50	wild grape vs control	Υ								
4th	32	wild grape vs control	Y								
st	49	Chinaberry vs Ailanthus	Y								
lst .	24	black cherry vs Ailanthus									
pu	38	Chinaberry vs Ailanthus	Y								
nd2	32	horseradish vs Ailanthus									
nd2	40	oriental bittersweet vs Ailanthus									
2nd2	30	hops vs Ailanthus	Y								
pug	40	wild grape vs Ailanthus	Y								
3rd 3rd 3rd 3rd 2	32	black cherry vs Ailanthus							7		
	40	alfalfa vs Ailanthus]		
	32	hops vs Ailanthus	Y								
	40	milkweed vs Ailanthus	Y								
3rd	50	wild grape vs Ailanthus	Y								
			100%	75%	50%	25%	0%	25%	50%	75%	100%

Cooperband lab

USDA RESEARCH UPDATE Spotted lanternfly

- Trap and Lure Development
- Behavioral bioassays
- Volatile profiles & electrophysiology
- Host preference & suitability
- Dispersal study

Nathan Derstine Otis Laboratory / University of Florida Cooperator

Linnea Meier Otis Laboratory / University of Florida Cooperator

Gas Chromatograph (GC) coupled with Electroantennographic Detector (EAD)

Volatile collections of plant odors

man was a second was

Ailanthus trunk with adult SLF

Black walnut branch

Ailanthus branch volatiles

Electrophysiology

Manderson Maria Mar

Volatile Collections	Antennally Active Compounds
Ailanthus branch	10
Ailathus branch + SLF	3
Ailanthus trunk	3
Black walnut branch	17
Hops	10

- Developed a GC-EAD method for *Lycorma delicatula*
- Sampled volatiles from 6 different potential hosts
- Identified 39 unique EAD responses from host plant volatiles
- Identified 19 of those compounds

moundumment

• Tested/ing novel compounds in behavioral bioassays and field

USDA RESEARCH UPDATE Spotted lanternfly

- Trap and Lure Development
- Volatile profiles & electrophysiology
- Behavioral bioassays
- Host preference & suitability
- Dispersal study

Nathan Derstine Otis Laboratory / University of Florida Cooperator

Kelley Murman, Stefani Cannon, Leslie Abreu, & Matt Wallace Otis Laboratory / East Stroudsburg University

2017 Methodology

Distance from release trees (m)

Capture... mark... release... recapture

Methodology – ... and recapture

24hr count

Interval counts with UV light

Recapture Distances

Distance from release tree (m)

Summer 2018 Study Underway

- Measure the distance SLF are attracted by the Ailanthus trap tree(s)●, and where else they end up ▲ (non-Ailanthus trees)
- % recapture of released SLF
- N=5 transects

Conclusions

- Fourty other antennally active plant compounds exist, half of which have been identified.
- Kairomones were identified and certain blends were much more attractive than methyl salicylate in the laboratory.
- Improved traps are being investigated.
- New developmental host records: chinaberry, hops, black walnut.
- SLF prefer to stay on *Ailanthus* if available and do not move much if it's a healthy tree. However, movement started to increase at 4th instar and adults, coinciding with tree decline.

Spotted Lanternfly Kairomones

Chemical/behavioral ecology lab studies underway or planned in 2018:

- Continue semiochemical discovery by conducting volatile collections, analysis by GC-MS, GC-EAD, and Y-tube studies.
- Compare odors of more plants to Ailanthus for preference.
- Compare novel compounds against methyl salicylate and/or each other to determine the most attractive compound.
- Continue to develop and test blends in Y-tube against methyl salicylate.
- Develop lures to test novel attractive compounds in the field.
- GC-EAD of male antennae to female volatiles and vice versa.
- Electroretinograms to assess possible color preferences.

Spotted Lanternfly Kairomones

Field testing for 2018:

- Test AgBio and AlphaScents MeSal lures for longevity in the field.
- Evaluate MeSal lures in low density for detection.
- Test best blend lures against MeSal lures.
- Test new semiochemical(s) against MeSal.
- Test several new traps/designs.
- Trap tree active space test using mark-release-recapture.
- Field host suitability studies on additional species.
- Adult mating/attraction studies and volatile collections.

2018 Cooperband Lab SLF Team:

Satellite lab in PA:

Otis Lab:

- Kelly Murman
- Stefani Cannon
- Leslie Abreu
- Isaiah Canlas
- Nathan Derstine
- Linnea Meier
- Sam Stella

Acknowledgements

- Kaitlin Cleary
- Greg Setliff
- Emelie Swackhamer
- Erica Smyers
- Zhao Longwa
- Sam Stella
- Chris Smith
- Mike Domingue
- Andy Myrick
- Mauri Barrett
- Liam Sullivan
- Theresa Murray
- Marci Murray
- DeeJay Lafoon
- Shannon Adams
- Melissa Warden
- Hannah Nadel
- Julia MacKay
- Allard Cossé
- Juli Gould

- Phil Lewis
- Scott Myers
- Damon Crook
- Joe Francese
- Sue Lane
- Thierry Bourgoin
- Allison Cornell
- Albert Ciccarone
- Laura Bugyi
- Pennsylvania Department of Agriculture
- Bedoukian
- AlphaScents
- Hercon Environmental
- ISCA Tech
- Scentry
- Sino Green
- Property owners
- Kutztown University
- Farm Bill funding

